Skip to main content

Ad

"Clyde’s Spot" on Jupiter

"Clyde’s Spot" on Jupiter
Source: NASA
Image credit: Image data: NASA/JPL-Caltech/SwRI/MSSS  

This image from NASA’s Juno spacecraft captures several storms in Jupiter’s southern hemisphere Some of these storms, including the Great Red Spot at upper left, have been churning in the planet’s atmosphere for many years, but when Juno obtained this view of Jupiter, the smaller, oval-shaped feature at the centre of the image was brand new.  

The new feature was discovered by amateur astronomer Clyde Foster of Centurion, South Africa. Early on the morning of May 31, 2020, while imaging Jupiter with his telescope, Foster noticed a new spot, which appeared bright as seen through a filter sensitive to wavelengths of light where methane gas in Jupiter's atmosphere has strong absorption. The spot was not visible in images captured just hours earlier by atmosphere has strong absorption. The spot was not visible in images captured just hours earlier by astronomers in Australia.  

On June 2, 2020, just two days after Clyde Foster’s observations, Juno performed its 27th close flyby of
Jupiter. The spacecraft can only image a relatively thin slice of Jupiter's cloud tops during each pass. Although Juno would not be travelling directly over the outbreak, the track was close enough that the mission team determined the spacecraft would obtain a detailed view of the new feature, which has been informally dubbed “Clyde’s Spot.”  

The feature is a plume of cloud material erupting above the upper cloud layers of the Jovian atmosphere. These powerful convective "outbreaks" occasionally erupt in this latitude band, known as the South Temperate Belt (JunoCam observed another outbreak at this latitude back on Feb. 7, 2018).

Comments

Popular posts from this blog

"Clyde’s Spot" on Jupiter

"Clyde’s Spot" on Jupiter Source: NASA Image credit: Image data: NASA/JPL-Caltech/SwRI/MSSS   This image from NASA’s Juno spacecraft captures several storms in Jupiter’s southern hemisphere. Some of these storms, including the Great Red Spot at upper left, have been churning in the planet’s atmosphere for many years, but when Juno obtained this view of Jupiter, the smaller, oval-shaped feature at the centre of the image was brand new. Learn more.   

Moon Craters a Window to Earth's Past

Moon Craters a Window to Earth's Past Story by Lonnie Shekhtman (Source: NASA Visualization Explorer) By looking at the Moon a group of scientists is challenging our understanding of a part of Earth’s history. On Earth, asteroid impacts increased by two to three times starting around 290 million years ago. For decades many experts assumed that early Earth craters have been worn away by the wind, storms, and other geologic processes. This idea explained why Earth has fewer older craters than expected compared to other bodies in the solar system, but it made it difficult to find an accurate impact rate and to determine whether it had changed over time. But by studying data on Moon craters from NASA’s Lunar Reconnaissance Orbiter, scientists found the Moon and Earth have historically shared a similar rate of asteroid impacts. The surface of the Moon is riddled with both ancient craters mostly undisturbed by erosion and craters from modern-day impacts making it the most complete and ac...

Typhoon changed earthquake patterns

Typhoon changed earthquake patterns Intensive erosion influenced seismicity Source:   GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre The increased mass shift due to the erosion of the typhoon and the deposit in the lower areas leads to increased seismic activity there (figure: Philippe Steer, University of Rennes) The Earth's crust is under constant stress. Every now and then this stress is discharged in heavy earthquakes, mostly  caused by the slow movement of Earth's crustal plates. There is, however, another influencing factor that has received little attention so far: intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly. This has now been shown for Taiwan by researchers from the GFZ German Research Centre for Geosciences in cooperation with international colleagues.  They report on this in the journal Scientific Reports .  Read more.