Skip to main content

Ad

Geologists Identify Deep-Earth Structures That May Signal Hidden Metal Lodes

Geologists Identify Deep-Earth Structures
that May Signal Hidden Metal Lodes
Finding New Giant Copper, Lead, Zinc Deposits Will Fuel Green Infrastructure by Kevin Krajick

If the world is to maintain a sustainable economy and fend off the worst effects of climate change, at least one industry will soon have to ramp up dramatically: the mining of metals needed to create a vast infrastructure for renewable power generation, storage, transmission and usage. The problem is, demand for such metals are likely to far outstrip currently both known deposits and the existing the technology used to find more ore bodies.

Now, in a new study, scientists have discovered previously unrecognized structural lines 100 miles or more down in the earth that appear to signal the locations of giant deposits of copper, lead, zinc and other vital metals lying close enough to the surface to be mined, but too far down to be found using current exploration methods. The discovery could greatly narrow down search areas, and reduce the footprint of future mines, the authors say. The study appears this week in the journal Nature Geoscience. 
 


A new study shows that giant ore deposits are tightly distributed above where rigid rocks that comprise the nuclei of ancient continents begin to thin, far below the surface (white areas). Redder areas indicate the thinnest rocks beyond the boundary; bluer ones, the thickest. Circles, triangles and squares show known large sediment-hosted deposits of different metals. (Adapted from Hoggard et al., Nature Geoscience, 2020)
 

Comments

Popular posts from this blog

"Clyde’s Spot" on Jupiter

"Clyde’s Spot" on Jupiter Source: NASA Image credit: Image data: NASA/JPL-Caltech/SwRI/MSSS   This image from NASA’s Juno spacecraft captures several storms in Jupiter’s southern hemisphere. Some of these storms, including the Great Red Spot at upper left, have been churning in the planet’s atmosphere for many years, but when Juno obtained this view of Jupiter, the smaller, oval-shaped feature at the centre of the image was brand new. Learn more.   

Moon Craters a Window to Earth's Past

Moon Craters a Window to Earth's Past Story by Lonnie Shekhtman (Source: NASA Visualization Explorer) By looking at the Moon a group of scientists is challenging our understanding of a part of Earth’s history. On Earth, asteroid impacts increased by two to three times starting around 290 million years ago. For decades many experts assumed that early Earth craters have been worn away by the wind, storms, and other geologic processes. This idea explained why Earth has fewer older craters than expected compared to other bodies in the solar system, but it made it difficult to find an accurate impact rate and to determine whether it had changed over time. But by studying data on Moon craters from NASA’s Lunar Reconnaissance Orbiter, scientists found the Moon and Earth have historically shared a similar rate of asteroid impacts. The surface of the Moon is riddled with both ancient craters mostly undisturbed by erosion and craters from modern-day impacts making it the most complete and ac...

Typhoon changed earthquake patterns

Typhoon changed earthquake patterns Intensive erosion influenced seismicity Source:   GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre The increased mass shift due to the erosion of the typhoon and the deposit in the lower areas leads to increased seismic activity there (figure: Philippe Steer, University of Rennes) The Earth's crust is under constant stress. Every now and then this stress is discharged in heavy earthquakes, mostly  caused by the slow movement of Earth's crustal plates. There is, however, another influencing factor that has received little attention so far: intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly. This has now been shown for Taiwan by researchers from the GFZ German Research Centre for Geosciences in cooperation with international colleagues.  They report on this in the journal Scientific Reports .  Read more.